Modelling technology unlocks powerful methods for more accurate weather forecasting

By Lloyd Treinish, Senior Technical Staff Member, Chief Scientist – Deep Thunder, IBM

The dog days of summer are upon us, and while for some of us, that means more care-free days of fun in the sun, many of us associate the summer months with severe and sometimes unusual weather events.  These events pose increasing economic and societal impacts, and the  challenges can leave us wondering what other weather-related surprises could be around the corner.

According to a recent report released by NOAA, the 12-month period from July 2011 to June 2012 was the warmest on record for the contiguous United States (since record keeping began in 1895). To make matters worse, these blistering heat waves are expected to increase due to a changing climate. In a recent publication, a group of Stanford University scientists made the prediction that certain regions of the world could start to see permanentlyhotter summers in just a couple decades.

watch?feature=player_embedded&v=pAsUbExIa3I

It is important to note that a warmer atmosphere contains more energy and can hold more moisture, which can lead to greater volatility and intensity of extreme weather events. Hence, it may be no coincidence that each day seems to bring a new headline about another weather-related disturbance. These events are to blame for countless fatalities and billions of dollars annually in property damage and loss.

Deep Thunder, IBM’s high resolution weather modeling technology, provides the granularity needed to improve preparedness. Using both historical and near real-time data, sophisticated analytics software and ever more powerful supercomputers, we can get extremely accurate weather forecasts and the impacts of severe events for specific locations (less than a mile) up to three days in advance.

Just recently, a rare type of severe windstorm for the eastern half of the US called a “derecho” blew through the Midwest and Mid-Atlantic areas. Not only was it unexpected by local authorities, it left millions to deal with sweltering temperatures without power or air conditioning.

Of course, such high temperatures over long periods have been linked to drought. For this year alone, that probably has an impact on the US economy of tens of billions of dollars. But such heat waves also have impact on the health of individuals and increase the likelihood of wildfires. So far in 2012, fires have burned about 2.4 million acres, according to the National Interagency Fire Center and the outlook for the remainder of the summer is grim.

And while we haven’t been hit with any major hurricanes so far this year, we are just six weeks into a six-month long hurricane season. Only twice before since such records have been kept (1887 and 1908), have two tropical storms formed before the official start of the season on June 1. Further, 2012 is the first year that four named storms occurred by June 23. This is the highest level of tropical storm activity based upon strength and duration since 1968. Therefore, we could have some significant events later this season.

In an ideal world, we would be better prepared for the potential impact of extreme weather events. Traditional weather forecasts provide a look into broad weather patterns, but given the technology that is available to us today, we can do even better.

Deep Thunder can provide longer advance notice of adverse weather conditions, allowing more time for disaster prevention. Rather than monitor a storm, we can stage resources at the right place and time prior to an event to minimize the impact and save lives. For example, we could have provided a detailed, 18-hour warning for the derecho that impacted Maryland, Virginia and the District of Columbia late last month.

The practical applications for such specific and timely forecasts are nearly limitless. Detailed weather forecasts could help utilities better prepare for demands on the grid such as pockets of high load during a heat wave, and anticipate conditions that could result in power outages to proactively deploy repair crews. Fire fighters can anticipate the direction of a wild fire to prevent further spreading. Cities can plan more effective responses to heat waves to protect their citizens from extreme conditions such as loss of power or mitigate the impact of flooding. Highway patrols can even anticipate buildup and redirect traffic in the case of evacuations. In all of these cases, Deep Thunder uses an approach of coupled modeling, driven by advanced weather modeling focused on a specific area of importance and connected to sophisticated techniques, to predict and visualize the impacts of weather on business and citizens.

The weather affects much of our daily lives — everything from sports to produce prices — and although we don’t have the technology to change it, at the very least, we can better plan for it.

Click here for  Full report

Source: IBM Smarter Planet